News

News

Applications of Ultraviolet Lasers in Key Fields

Oct 29, 2025 Beyond Laser Industry Trends

(1) Semiconductor Manufacturing

The semiconductor industry is the core of modern technology and has extremely high precision requirements. 

Ultraviolet lasers are indispensable in semiconductor manufacturing. 

From chip lithography processes to wafer cutting, ultraviolet lasers play a crucial role. 

Deep ultraviolet lithography technology (DUV), using a 193nm excimer laser as a light source, has become one of the mainstream technologies in large-scale integrated circuit manufacturing, capable of achieving lithography of chip patterns at sizes of tens of nanometers or even smaller, greatly promoting the increase in chip integration and performance optimization. 

In wafer cutting, ultraviolet lasers, with their high precision and low thermal impact characteristics, can achieve crack-free, high-precision cutting of wafers, increasing the yield and production efficiency of chip manufacturing. CO₂ lasers are less applied in the core processes of semiconductor manufacturing due to issues with precision and thermal impact.

(2) Biomedical

In the biomedical field, the application of ultraviolet lasers has brought new breakthroughs in disease diagnosis and treatment. 

In laser-induced fluorescence spectroscopy analysis, ultraviolet lasers can excite biomolecules to produce specific fluorescence signals, detecting these signals to achieve high-sensitivity detection and analysis of biomolecules, aiding in early disease diagnosis. 

In laser microfabrication, ultraviolet lasers can be used to produce biomedical devices such as biochips and microfluidic chips. 

Their high-precision processing capabilities can manufacture tiny channels and structures on chips for cell culture, biomolecule separation, and detection. 

In the field of laser cosmetology, ultraviolet lasers utilize their high energy characteristics to precisely remove skin surface pigmentation, tattoos, etc., while minimizing damage to surrounding normal skin tissue, achieving safe and efficient cosmetic treatment results. 

(3) Precision Optics Manufacturing

Precision optical component manufacturing has extremely high requirements for processing accuracy and surface quality. 

Ultraviolet lasers have unique advantages in the processing of optical lenses, prisms, diffraction gratings, and other optical components. 

Through fine processing with ultraviolet lasers, high-precision microstructures can be manufactured on the surface of optical components, such as antireflective coatings that increase lens transmittance and diffraction structures that achieve specific optical functions. 

The manufacturing accuracy of these microstructures directly affects the performance of optical components. 

In the manufacturing of high-end digital camera lenses, antireflective coatings processed with ultraviolet lasers can effectively reduce light reflection, increasing lens transmittance and imaging quality. 

CO₂ lasers have a relatively narrow application range in such high-precision optical component processing due to limitations in processing accuracy and surface quality.


  • What are the precautions for operating a laser marking machine?

    1. It is strictly prohibited to start the laser power supply and Q-switching power supply when there is no water or the water circulation is abnormal.


    2. The Q power supply is not allowed to operate without load (i.e., the output terminal of the Q power supply should be left floating).


    3. In case of any abnormal phenomenon, first turn off the galvanometer switch and the key switch, and then conduct a check.


    4. It is not allowed to start other components before the krypton lamp is lit to prevent high voltage from entering and damaging the components.


    5. Pay attention to leaving the output terminal (anode) of the laser power supply suspended to prevent sparking and breakdown with other electrical appliances.


    6. Keep the internal circulating water clean. Regularly clean the water tank and replace it with clean deionized water or pure water.


  • What should we do when laser intensity decreases and the marking is not clear enough?

    1. Turn off the machine and check if the laser resonant cavity has changed; Fine-tune the resonant cavity lens. Make the output light spot the best;


    2. The acousto-optic crystal is offset or the output energy of the acousto-optic power supply is too low;

    Adjust the position of the audio-visual crystal or increase the working current of the audio-visual power supply;


    3. The laser entering the galvanometer deviates from the center: Adjust the laser;


    4. If the current is adjusted to around 20A but the light sensitivity is still insufficient: the krypton lamp is aging. Replace it with a new one.


  • How to maintain a UV laser cutting machine?

    1. It is required to carry out regular cleaning every day, remove debris from the countertop, limiters and guide rails, and spray lubricating oil on the guide rails


    2. The waste materials in the collection box should be cleared regularly to prevent excessive waste from blocking the exhaust port.


    3. Clean the chiller once every 15 days, drain all the internal water, and then fill it with fresh pure water.


    4. The reflector and focusing lens should be wiped with a special cleaning solution every 6 to 8 hours. 

    When wiping, use a cotton swab or cotton swab dipped in the cleaning solution to wipe from the center to the edge of the focusing lens in a counterclockwise direction. 

    At the same time, be careful not to scratch the lens.


    5. The indoor environment can affect the lifespan of the machine, especially in damp and dusty conditions. 

    A damp environment is prone to causing rust on the reflective lenses and also easily leading to short circuits, discharge and sparking of the velvet laser.


  • What accidents might be caused by the laser emission when using a laser cutting machine?

    (1) A fire was caused by the laser coming into contact with flammable materials. 

    Everyone knows that the power of laser generators is very high, especially when it comes to high-power laser cutting machines, the temperature of the emitted laser is extremely high. The possibility of a fire being caused when a laser beam comes into contact with flammable objects is very high.

    (2) Harmful gases may be produced when the machine is in operation. 

    For instance, when cutting with oxygen, it undergoes a chemical reaction with the cutting material, generating unknown chemical substances or fine particles and other impurities. After being absorbed by the human body, it may cause allergic reactions or discomfort in the lungs and other respiratory tracts. Protective measures should be taken when conducting work.

    (3) Direct laser exposure to the human body can be harmful. 

    The damage caused by lasers to the human body mainly includes damage to the eyes and skin. Among the harms caused by lasers, the damage to the eyes is the most severe. Moreover, damage to the eyes is permanent. So when doing homework, you must pay attention to protecting your eyes.


  • What is the focused spot diameter of nanosecond, picosecond and femtosecond laser?

    Nanosecond: The light spot is 0.5-1mm.

    Picosecond: The focused spot is around 0.02mm.

    Femtosecond: Under the action of a laser beam with a high repetition rate of 100-200KHz and a very short pulse width of 10ps,

    the focused spot diameter is as small as 0.003mm.


  • What are the main applications of UV laser cutting machine?

    The UV laser cutting machine can be used for cutting and depaneling PCB. 

    It can precisely cut and shape various types of PCB circuit boards with V-CUT and stamp holes, and open Windows and covers. 

    It can also be used for separating packaged circuit boards and ordinary smooth boards. 

    It is suitable for cutting various types of PCB substrates, such as ceramic substrates, rigid-flex boards, FR4, PCBs, FPCs, fingerprint recognition modules, cover films, composite materials, copper substrates, aluminum substrates, etc.

  • Precautions for laser cutting machines to process various metal materials?

    Copper and brass: 

    Both materials have high reflectivity and excellent thermal conductivity. 

    Brass with a thickness of less than 1mm can be processed by nitrogen laser cutting. 

    Copper with a thickness of less than 2mm can be cut. The gas used for laser cutting processing must be oxygen. 

    Copper and brass can only be cut when a "reflective absorption" device is installed on the system. Otherwise, reflection will damage the optical components.


    Synthetic materials: 

    Processable synthetic materials include: thermoplastics, thermosetting materials and artificial rubber.


    Aluminum: 

    Despite its high reflectivity and thermal conductivity, aluminum materials with a thickness of less than 6mm can be cut, depending on the type of alloy and the capacity of the laser. 

    When cutting with oxygen, the cutting surface is rough and hard. 

    When nitrogen is used, the cutting surface is smooth. 

    Pure aluminum is extremely difficult to cut due to its high purity. 

    Only when a "reflection and absorption" device is installed on the fiber laser cutting machine system can aluminum materials be cut. 

    Otherwise, reflection will damage the optical components


  • What should be paid attention to when laser cutting stainless steel?

    Laser cutting processing of stainless steel requires the use of oxygen, under the condition that edge oxidation is not a concern. 

    If nitrogen is used to achieve an edge free of oxidation and burrs, no further processing is required. 

    Coating an oil film on the surface of the sheet will achieve a better perforation effect without reducing the processing quality.

 

联系我们

提交您的信息,我们将尽快与您联系
×